Optimizing genetic algorithm for motif discovery
نویسندگان
چکیده
منابع مشابه
Genetic Algorithm Based Probabilistic Motif Discovery in Unaligned Biological Sequences
Finding motif in biosequences is the most important primitive operation in computational biology. There are many computational requirements for a motif discovery algorithm such as computer memory space requirement and computational complexity. To overcome the complexity of motif discovery, we propose an alternative solution integrating genetic algorithm and Fuzzy Art machine learning approaches...
متن کاملAn Efficient Algorithm for String Motif Discovery
Finding common patterns, motifs, in a set of DNA sequences is an important problem in bioinformatics. One common representation of motifs is a string with symbols A, C, G, T and N where N stands for the wildcard symbol. In this paper, we introduce a more general motif discovery problem without any weaknesses of the Planted (l,d)-Motif Problem and also a set of control sequences as an additional...
متن کاملOptimizing genetic algorithm strategies for evolving networks
This paper explores the use of genetic algorithms for the design of networks, where the demands on the network fluctuate in time. For varying network constraints, we find the best network using the standard genetic algorithm operators such as inversion, mutation and crossover. We also examine how the choice of genetic algorithm operators affects the quality of the best network found. Such netwo...
متن کاملTree-structured algorithm for long weak motif discovery
MOTIVATION Motifs in DNA sequences often appear in degenerate form, so there has been an increased interest in computational algorithms for weak motif discovery. Probabilistic algorithms are unable to detect weak motifs while exact methods have been able to detect only short weak motifs. This article proposes an exact tree-based motif detection (TreeMotif) algorithm capable of discovering longe...
متن کاملHybrid Gibbs-sampling algorithm for challenging motif discovery: GibbsDST.
The difficulties of computational discovery of transcription factor binding sites (TFBS) are well represented by (l, d) planted motif challenge problems. Large d problems are difficult, particularly for profile-based motif discovery algorithms. Their local search in the profile space is apparently incompatible with subtle motifs and large mutational distances between the motif occurrences. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2010
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2010.06.003